How do membrane proteins sense water stress?

نویسندگان

  • Bert Poolman
  • Paul Blount
  • Joost H A Folgering
  • Robert H E Friesen
  • Paul C Moe
  • Tiemen van der Heide
چکیده

Maintenance of cell turgor is a prerequisite for almost any form of life as it provides a mechanical force for the expansion of the cell envelope. As changes in extracellular osmolality will have similar physicochemical effects on cells from all biological kingdoms, the responses to osmotic stress may be alike in all organisms. The primary response of bacteria to osmotic upshifts involves the activation of transporters, to effect the rapid accumulation of osmoprotectants, and sensor kinases, to increase the transport and/or biosynthetic capacity for these solutes. Upon osmotic downshift, the excess of cytoplasmic solutes is released via mechanosensitive channel proteins. A number of breakthroughs in the last one or two years have led to tremendous advances in our understanding of the molecular mechanisms of osmosensing in bacteria. The possible mechanisms of osmosensing, and the actual evidence for a particular mechanism, are presented for well studied, osmoregulated transport systems, sensor kinases and mechanosensitive channel proteins. The emerging picture is that intracellular ionic solutes (or ionic strength) serve as a signal for the activation of the upshift-activated transporters and sensor kinases. For at least one system, there is strong evidence that the signal is transduced to the protein complex via alterations in the protein-lipid interactions rather than direct sensing of ion concentration or ionic strength by the proteins. The osmotic downshift-activated mechanosensitive channels, on the other hand, sense tension in the membrane but other factors such as hydration state of the protein may affect the equilibrium between open and closed states of the proteins.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Changing the Physiological Response and Water Relationships in Sweet Pepper When Stopping the Activity of Root Aquaporin in Drought Stress

Aquaporins are the main proteins in the plasma membrane, which facilitates the movement of water, carbon dioxide, and other small soluble material through the membrane. The aim of this study was to investigate the role of root acuporine on the physiological, biochemical and biochemical changes and water relations under drought stress. For this purpose, a study was conducted in a completely rand...

متن کامل

Arabidopsis leaf plasma membrane proteome using a gel free method: Focus on receptor–like kinases

The hydrophobic proteins of plant plasma membrane still remain largely unknown.  For example in the Arabidopsis genome, receptor-like kinases (RLKs) are plasma membrane proteins, functioning as the primary receptors in the signaling of stress conditions, hormones and the presence of pathogens form a diverse family of over 610 genes. A limited number of these proteins have appeard in pr...

متن کامل

Cytoplasmic acidification reduces potassium channel activities in the endoplasmic reticulum of rat hepatocytes

Introduction: Intracellular pH (pHi) regulates essentially all aspects of cellular activities. However, it is unknown how endoplasmic reticulum (ER) potassium channels sense pHi. In this study, we investigate the direct effects of pHi on ER potassium channels. Methods: We used channel incorporation into the bilayer lipid membrane method. L-α-phosphatidylcholine, a membrane lipid, was extrac...

متن کامل

Molecular study of 20-line advanced proteins of durum wheat under water stress

In order to investigate different lines of durum wheat for water stress tolerance, an experiment in the greenhouse was implemented, using 20 lines of durum wheat at two levels of water stress (40% and 70% of the amount of available water was completely drained in 0.4 and 0.7 levels of stress, respectyively and re-irrigation was performed) and a control level (complete irrigation) in the form of...

متن کامل

Analysis of the Arabidopsis histidine kinase ATHK1 reveals a connection between vegetative osmotic stress sensing and seed maturation.

To cope with water stress, plants must be able to effectively sense, respond to, and adapt to changes in water availability. The Arabidopsis thaliana plasma membrane His kinase ATHK1 has been suggested to act as an osmosensor that detects water stress and initiates downstream responses. Here, we provide direct genetic evidence that ATHK1 not only is involved in the water stress response during ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular microbiology

دوره 44 4  شماره 

صفحات  -

تاریخ انتشار 2002